Gedling Borough Council - England

2011 Air Quality Progress Report for Gedling Borough Council

In fulfillment of Part IV of the Environment Act 1995 Local Air Quality Management

April 2011

Local Authority Officer Brendan Cox

Department	Planning and Environment			
Address	Civic Centre, Arnot Hill Park, Arnold,			
	Nottingnamsnire, NG5 6LU			
Telephone	0115 9013901			
e-mail	environmental.health@gedling.gov.uk			

Report Reference number	
Date	March 2011

Executive Summary

Part IV of the Environment Act 1995 requires local authorities to review and assess the current and future air quality in their areas against objectives set out for eight key air pollutants, under the provisions of the National Air Quality Regulations 2000 and the Air Quality (Amendment) Regulations 2002.

A review and assessment of air quality is the first step in the Local Air Quality Management (LAQM) process. Part IV of the Act requires each local authority to review air quality 'from time to time'. The National Air Quality Regulations 2000 and the Air Quality (Amendment) Regulations 2002 prescribe air quality objectives and the dates for meeting them. Local Authorities should only undertake a level of assessment that is commensurate with the risk of an air quality objective being exceeded.

Progress Reports are required in the intervening years between the three-yearly Updating and Screening Assessment reports. Their purpose is to maintain continuity in the Local Air Quality Management process

Where the Progress Report has identified a risk that an air quality objective will be exceeded at a location with relevant public exposure, the Local Authority is still required to undertake a Detailed Assessment. The aim being to identify with reasonable certainty, whether or not a likely exceedence will occur.

- Gedling Borough Council has examined the results from monitoring in the borough. Concentrations for all pollutants except NO₂ are below the objectives, therefore there is no need to proceed to a Detailed Assessment.
- Gedling Borough Council has measured concentrations of NO₂ above the annual mean objective at relevant locations; **this data is being fed into a Further Assessment, for the A60 Mansfield Road.**
- Gedling Borough Council confirms that there are no new or newly identified local developments which may have an impact on air quality within the Local Authority area.

Gedling Borough Council proposes no further action as a result of this Progress Report. The Council is currently beginning the process of producing a Further Assessment and Action Plan for NO₂ along the A60 Mansfield Road; data from this report will be fed into this assessment.

Table of contents

1	Intr	oduction	6			
	1.1	Description of Local Authority Area	6			
	1.2	Purpose of Progress Report	7			
	1.3	Air Quality Objectives	7			
	1.4	Summary of Previous Review and Assessments	8			
2	Nev	v Monitoring Data	10			
	2.1	Summary of Monitoring Undertaken	10			
	2.2	Comparison of Monitoring Results with Air Quality Objectives	13			
3	New Local Developments					
	3.1	Road Traffic Sources	18			
	3.2	Other Transport Sources	18			
	3.3	Industrial Sources	18			
	3.4	Commercial and Domestic Sources	18			
	3.5	New Developments with Fugitive or Uncontrolled Sources	18			
4	Loc	al / Regional Air Quality Strategy	19			
5	Pla	nning Applications	20			
6	Cor	nclusions and Proposed Actions	21			
	6.1	Conclusions from New Monitoring Data	21			
	6.2	Conclusions relating to New Local Developments	21			
	6.3	Proposed Actions	21			
7	Ref	erences	22			

Appendices

Appendix A: Maps

Appendix B: Nitrogen Dioxide Diffusion Tube Results and Bias Adjustment Details Appendix C: QA/QC Data

List of Tables

- Table 1.1Air Quality Objectives included in Regulations for the purpose of
Local Air Quality Management in England.
- Table 1.2Summary of LAQM Reports 2003 2010
- Table 2.1
 Details of Automatic Monitoring Site
- Table 2.2
 Details of Non- Automatic Monitoring Sites
- Table 2.3aResults of Automatic Monitoring for Nitrogen Dioxide: Comparison
with Annual Mean Objective
- Table 2.3bResults of Automatic Monitoring for Nitrogen Dioxide: Comparison
with 1-hour Mean Objective
- Table 2.4Results of Nitrogen Dioxide Diffusion Tubes
(adjusted for bias and location)
- Table 2.5
 Results of BTex Diffusion Tubes

List of Figures

- Figure 1.1 Gedling Borough Location Plan
- Figure 2.1 Location of ROMON enclosure, Daybrook Square
- Figure 2.3 Trends in Monthly Mean Nitrogen Dioxide Concentration Daybrook Square.
- Figure 2.4 Trends in Annual Mean Nitrogen Dioxide Concentration Measured at Diffusion Tube Monitoring Sites.

1 Introduction

1.1 Description of Local Authority Area

Established in 1974, the Borough of Gedling is home to 112,000 people and covers an area of 46.3 square miles. It borders Sherwood Forest to the north, the River Trent to the south-east and the City of Nottingham to the south-west.

The main urban areas of Arnold, Carlton, Gedling, Netherfield and Mapperley form part of the Nottingham conurbation and contain the largest proportion of population and industry. The other major villages are Ravenshead, Calverton, Burton Joyce, Newstead Village and Woodborough.

The major area for industry lies to the south of the Borough at the Colwick Industrial Estate, an assortment of other light industry occurs throughout the Borough. Agriculture is also an important industry, particularly to the north.

The local authorities bordering Gedling are Ashfield District Council, Newark and Sherwood District Council, Nottingham City Council and Rushcliffe Borough Council.

Figure 1.1 Gedling Borough Location Plan

1.2 Purpose of Progress Report

Progress Reports are required in the intervening years between the three-yearly Updating and Screening Assessment reports. Their purpose is to maintain continuity in the Local Air Quality Management process.

They are not intended to be as detailed as Updating and Screening Assessment Reports, or to require as much effort. However, if the Progress Report identifies the risk of exceedence of an Air Quality Objective, the Local Authority (LA) should undertake a Detailed Assessment immediately, and not wait until the next round of Review and Assessment.

1.3 Air Quality Objectives

The air quality objectives applicable to Local Air Quality Management (LAQM) in **England** are set out in the Air Quality (England) Regulations 2000 (SI 928), and the Air Quality (England) (Amendment) Regulations 2002 (SI 3043). They are shown in Table 1.1. This table shows the objectives in units of microgrammes per cubic metre $\mu g/m^3$ (for carbon monoxide the units used are milligrammes per cubic metre, $mg'm^3$). Table 1.1. includes the number of permitted exceedences in any given year (where applicable).

Pollutant	Air Quality Objective	Date to be	
	Concentration	Measured as	achieved by
Benzene	16.25 μg/m ³	Running annual mean	31.12.2003
	5.00 <i>µ</i> g/m ³	Running annual mean	31.12.2010
1,3-Butadiene	2.25 μg/m ³	Running annual mean	31.12.2003
Carbon monoxide	10.0 mg/m ³	Running 8-hour mean	31.12.2003
Lead	0.5 μ g/m ³	Annual mean	31.12.2004
	0.25 μg/m ³	Annual mean	31.12.2008
Nitrogen dioxide	200 μ g/m ³ not to be exceeded more than 18 times a year	1-hour mean	31.12.2005
	40 µg/m ³	Annual mean	31.12.2005
Particles (PM ₁₀) (gravimetric)	50 μ g/m ³ , not to be exceeded more than 35 times a year	24-hour mean	31.12.2004
	40 μg/m ³	Annual mean	31.12.2004
Sulphur dioxide	350 μ g/m ³ , not to be exceeded more than 24 times a year	1-hour mean	31.12.2004
	125 μ g/m ³ , not to be exceeded more than 3 times a year	24-hour mean	31.12.2004
	266 μ g/m [°] , not to be exceeded more than 35 times a year	15-minute mean	31.12.2005

Table 1.1	Air Quality Objectives included in Regulations for the purpose of
	Local Air Quality Management in England.

1.4 Summary of Previous Review and Assessments

Table 1.2Summary of LAQM Reports 2003 – 2010

Report	Conclusions/Actions				
2003 Updating and Screening Assessment	No Further Assessment Required				
2004 Progress Report	No Further Assessment Required				
2005 Progress Report	Progress to DA for NO ₂ A60 Mansfield Rd. Daybrook				
2006 Detailed Assessment	 <u>"A60 Mansfield Road, Daybrook</u> The results from the monitoring and modelling carried out to date would tend to indicate that Nitrogen Dioxide levels along the A60 Mansfield Road are below the annual objective of 40µg/m³. The area is however, of continual concern and therefore Gedling Borough will continue to monitor levels along this road. Gedling Borough will also review the configuration of the co-located diffusion tubes, which may be a contributing factor to the large differences between national and local bias adjustment studies." 				
2006 Updating and Screening Assessment	Progress to DA for NO ₂ A60 Mansfield Rd. B684 Woodborough Rd/Plains Rd C168 Victoria Road				
2007 Detailed Assessment	" <u>A60 Mansfield Road, Daybrook</u> Overall results from the monitoring and modelling carried out to date would tend to indicate that Nitrogen Dioxide levels along the A60 Mansfield Road are below the annual objective of 40μg/m ³ . Therefore we do not consider it necessary to declare an Air Quality Management Area at this time. The area is however, of continual concern and therefore Gedling Borough will continue to monitor levels along this road.				
	B684 Woodborough/Plains Road, Mapperley				
	Results from the additional monitoring and modelling carried out to date would tend to indicate that Nitrogen Dioxide levels along the B684 Woodborough/Plains Road, Mapperley are below the annual objective of 40µg/m ³ . Therefore we do not consider it necessary to declare an Air Quality Management Area at this time. The area is however, of continual concern and therefore Gedling Borough will continue to monitor levels along this road.				
	contd.				

Gedling Borough Council - England

Report	Conclusions/Actions
2007 Detailed Assessment contd.	<u>C168 Victoria Road, Netherfield</u> Results from the additional monitoring and modelling carried out to date would tend to indicate that Nitrogen Dioxide levels along the C168 Victoria Road, Netherfield are below the annual objective of 40µg/m ³ . Therefore we do not consider it necessary to declare an Air Quality Management Area at this time. The area is however, of continual concern and therefore Gedling Borough will continue to monitor levels along this road."
2008 Progress Report	No Further Assessment Required
2009 Updating and Screening Assessment	Progress to DA for NO ₂ - A60 Mansfield Rd.
2010 Progress Report	No Further Assessment Required
2010 Detailed Assessment	It is considered that, on balance, the objective for Nitrogen Dioxide is likely to be exceeded along the A60 Mansfield Road between its junction with Thackerays Lane and Oxclose Lane. Based on the contour models this would equate to approximately 50 residential properties exposed to pollutant concentrations above the objective. Therefore, it is proposed that GBC declare an Air Quality Management Area (AQMA) for Nitrogen Dioxide

Note: The AQMA order for the A60 Mansfield Road was made on 1st April 2011.

2 New Monitoring Data

2.1 Summary of Monitoring Undertaken

2.1.1.1 Automatic Monitoring Sites

Gedling Borough has one analyser measuring NOx and NO to calculate a value of NO_2 .

During 2001-2007 the analyser was housed in the basement of the Daybrook Baptist Chapel, Daybrook Square (see maps in appendix A). This site provided a safe and secure, dry location with a constant temperature and electrical supply. In January of 2008 however, the analyser was moved to a Casella ROMON enclosure on the opposite side of the A60 Mansfield Road, still in Daybrook Square.

The new enclosure is situated approximately 5 metres from the kerb to best represent the receptors located 75 metres further along the road, given the constraints for siting.

Figure 2.1 Location of ROMON enclosure, Daybrook Square

Site Name	Site Type	OS Grid Ref	Pollutants Monitored	lutants In Releva nitored AQMA? Exposu		Distance to kerb of nearest road	Worst-case Location?
Daybrook Square	Roadside	X 457944 Y 344596	NOx / NO ₂	Y	N (75m)	5 metres	Ν

 Table 2.1
 Details of Automatic Monitoring Site

2.1.1.2 Non-Automatic Monitoring

Nitrogen Dioxide Diffusion Tubes

Gedling Borough has 23 diffusion tubes spread along the key areas of concern, which are mainly commuter routes into Nottingham City Centre. The Borough also has three urban background and one rural background tube(s).

In 2004 most of the tubes were moved to new locations that better reflected the "receptor" based risk assessment criteria of guidance. The three tubes, Daybrook Analyser I, II and III, are located at the sampling head of the continuous automatic analyser. (See location maps in Appendix A)

Following the recommendations of the 2009 USA report three additional tubes were placed at relevant locations along the critical section through Daybrook Square, from July 2009.

Details of the co-location study and subsequent bias adjustment can be found in Appendix B, along with full monitoring results. QA/QC procedures and laboratory details can be found in Appendix C.

Benzene Diffusion Tubes

Gedling Borough Council does monitor for Benzene using a small number of BTex passive diffusion tubes. BTex tubes are small metal tubes open at one end with a pollutant-absorbing chemical matrix at the closed end. At site, the tube is exposed, by removal of the end cap, for a period of one month. After the month the tube is resealed and sent to an analytical laboratory.

BTex tube results are for benzene, toluene, ethyl-benzene and xylene. The concentrations of the other pollutants can be used to validate the benzene results as local conditions may affect the results i.e. high levels of solvents from industrial processes. Benzene concentrations measured in micrograms per cubic metre (μgm^3) .

Tubes are located around the TotalFinaElf Storage Depot, Private Road No. 3, Colwick Industrial Estate and also Chaworth Road and Bourne Mews which have been identified as a possible receptors for exceedence of the 2010 objective. A single tube is also placed in the north of the Borough as a rural background site. (See Maps in Appendix A)

Site Name	Site Type	OS Grid Ref	Pollutants Monitored	In AQMA?	Relevant Exposure?	Distance to kerb of nearest road	Worst- case Location?
Marion Murdoch Court	Urban Background	X 461294 Y 342826	NO ₂	Ν	N/A	N/A	N/A
Hastings Street	Urban Background	X 460391 Y 341413	NO ₂	Ν	N/A	N/A	N/A
856 Plains Road	Receptor	X 458898 Y 343139	NO ₂	Ν	Y	8m	Y
Morley Mills Building	Receptor	X 457969 Y 344780	NO ₂	Y	Y	3m	Y
Mansfield Road, Redhill	Near Receptor	X 457899 Y 345637	NO ₂	Y	N (25m)	10m	Ν
Daybrook Dental Surgery	Receptor	X 457867 Y 345388	NO ₂	Y	N (30m)	2.3m	Y
19 Victoria Road	Receptor	X 461995 Y 341175	NO ₂	Ν	Y	4m	Y
36 Victoria Road	Roadside	X 462002 Y 341097	NO ₂	Ν	N (4.5m)	1.5m	Y
47 Plains Road	Receptor	X 459244 Y 343549	NO ₂	Ν	Υ	7m	Y
Daybrook Analyser	Reference to Analyser	X 457974 Y 344632	NO ₂	Y	N/A	5m	N/A
Burton Rd/Shearing Hill	Near Receptor	X 462422 Y 341972	NO ₂	Ν	N (9m)	16m	Ν
The Vale PH	Roadside	X 457929 Y 344335	NO ₂	Y	N (14m)	3.5m	Ν
The Grove PH	Near Receptor	X 457947 Y 344651	NO ₂	Y	N (16m)	3.5m	Y
Ricket Lane	Rural Background	X 456621 Y 355935	NO ₂	Ν	N/A	N/A	N/A
Wickes Store, Daybrook	Near Receptor	X 458364 Y 345280	NO ₂	Y	N (50m)	3m	Ν
Civic Centre, Arnold	Urban Background	X 458662 Y 345618	NO ₂	Ν	N/A	N/A	N/A
Mile End Road	Near Receptor	X 461103 Y 340086	NO ₂	Ν	Y	10m	Y
Daybrook Chip Shop	Near Receptor	X 457947 Y 344713	NO ₂	Y	Y	3m	Y
T&S Heating, Daybrook	Near Receptor	X 457950 Y 344748	NO ₂	Y	Y	3m	Y
Frank Keys, Daybrook	Near Receptor	X 457969 Y 344827 NO ₂ Y Y 3m		3m	Y		
Private Road No3	Urban Industrial	X 462142 Y 340384	BTex	Ν	N/A	N/A	N/A
Bourne Mews	Urban Background	X 462125 Y 340874	BTex	Ν	Y	N/A	Y
Ricket Lane	Rural	X 456621 Y 355935	BTex	Ν	N/A	N/A	N/A
Hollyoake Villas	Receptor	X 461795 Y 340703	BTex	Ν	Y	N/A	Y

Table 2.2 Details of Non- Automatic Monitoring Sites

2.2 Comparison of Monitoring Results with Air Quality Objectives

The results of 2010 monitoring for nitrogen dioxide and benzene have been compared against air quality objectives.

2.2.1 Nitrogen Dioxide

Automatic Monitoring Data

Results for automatic monitoring for 2010 show no exceedences of the air quality objectives for NO_2 . Figure 2.3 shows a slight increase in NO_2 levels over a seven year period (2004-2010).

Table 2.3aResults of Automatic Monitoring for Nitrogen Dioxide: Comparison
with Annual Mean Objective

	Within	Data Capture for full	Annual mean concentrations (μg/m³)					
Location	AQMA?	calendar year 2010 %	2006	2007	2008	2009	2010	
Daybrook Square	Y	95	35	32	34	36	39	

Figure 2.3 Trends in Monthly Mean Nitrogen Dioxide Concentration Daybrook Square.

Table 2.3bResults of Automatic Monitoring for Nitrogen Dioxide: Comparison
with 1-hour Mean Objective

Location	Within AQMA?	Data Capture for full calendar year 2010	Number of Exceedences of hourly mean (200 μg/m³) If the period of valid data is less than 90% of full year, include the 99.8 th percentile of hour means in brackets.				
		70	2008*	2009	2010		
Daybrook Square	Y	95	0 (127)	0	1		

*10 months of data

Diffusion Tube Monitoring Data

The results of diffusion tube monitoring for 2010 (Table 2.4) show some exceedences of the air quality objectives at receptors along the A60 Mansfield Road: Full diffusion tube monitoring dataset, including details of bias and location adjustments are available in Appendix B.

Table 2.4Results of Nitrogen Dioxide Diffusion Tubes
(adjusted for bias and location)

			Dete	Data	Annual mean		
			Data Conturo for	Capture for	conce	ntrations (μ g/mč)
Site ID	Location	Within AQMA?	monitoring period %	calendar year 2010 %	2008 [†]	2009 ^{††}	2010
G1	Marion Murdoch Court	Ν	n/a	100	19	21	21
G2	Hastings Street	Ν	n/a	100	23	24	24
G3	856 Plains Road	Ν	n/a	100	31	30	31
G4	Morley Mills Building	Y	n/a	100	40	40	38
G5	Mansfield Road, Redhill	Y	n/a	100	27	32	29
G6	Daybrook Dental Surgery	Y	n/a	100	37	37	37
G7	19 Victoria Road	Ν	n/a	100	32	33	32
G8	36 Victoria Road	Ν	n/a	100	35	33	31
G9	47 Plains Road	Ν	n/a	100	31	32	32
G13	Burton Rd/Shearing Hill	Ν	n/a	92	24	26	27
G14	The Vale PH	Y	n/a	100	34	34	33
G15	The Grove PH	Y	n/a	100	40	38	42
G16	Ricket Lane	N	n/a	100	18	19	16
G17	Wickes Store, Daybrook	Y	n/a	92	34	36	35
G18	Civic Centre, Arnold	N	n/a	100	20	21	23
G19	Mile End Road	Ν	n/a	100	27	27	30
G20	Daybrook Chip Shop	Y	n/a	92	-	48	44
G21	T&S Heating, Daybrook	Y	n/a	92	-	49	45
G22	Frank Keys, Daybrook	Y	n/a	100	-	43	41

[†]9 months of data.

⁺⁺6 month data has been "annualised" using Box 3.2 of TG(09).

Gedling Borough Council - England

Figure 2.4 shows a series of graphs plotting diffusion tube results over a 33 month period (2008 – 2010), the results since the change to Gradko laboratory. These graphs split into urban/background sites, Mansfield Road sites and Plains/Woodborough Road sites show:

- The trendline for the indicative urban background site shows an increasing trend over time in the levels of NO₂.
- The trendline for the indicative Mansfield Road site shows a flat response over time in the levels of NO₂.
- The trendline for the indicative Plains Road site shows a slight increasing trend over time in the levels of NO₂.

Figure 2.4 Trends in Annual Mean Nitrogen Dioxide Concentration Measured at Diffusion Tube Monitoring Sites.

Figure 2.4 contd. Trends in Annual Mean Nitrogen Dioxide Concentration Measured at Diffusion Tube Monitoring Sites.

Gedling Borough Council - England

2.2.2 PM₁₀

Gedling Borough Council does not monitor for PM₁₀.

2.2.3 Sulphur Dioxide

Gedling Borough Council does not monitor for Sulphur Dioxide.

2.2.4 Benzene

Table 2.5 shows monitoring results for the past three years, no exceedences of the benzene air quality 2010 objective were measured ($5.00 \ \mu g/m^3$).

Table 2.5 Results of BTex Diffusion Tubes

Location	Annu	Annual mean concentrations (µg/m³)								
	2008	2009	2010							
Private Road No.3	0.92	0.90	0.66							
Bourne Mews	0.85	0.49	0.76							
Ricket Lane (rural backgnd)	0.85	0.59	0.79							
Hollyoake Villas	0.98	0.79	0.89							

2.2.5 Other pollutants monitored

No other pollutants monitored.

2.2.6 Summary of Compliance with AQS Objectives

Gedling Borough Council has examined the results from monitoring in the borough. Concentrations for all pollutants except NO_2 are below the objectives, therefore there is no need to proceed to a Detailed Assessment.

Gedling Borough Council has measured concentrations of NO₂ above the annual mean objective at relevant locations; **this data is being fed into a Further Assessment, for the A60 Mansfield Road.**

3 New Local Developments

3.1 Road Traffic Sources

No significant change since the Progress Report 2010.

3.2 Other Transport Sources

No significant change since the Progress Report 2010.

3.3 Industrial Sources

No significant change since the Progress Report 2010.

3.4 Commercial and Domestic Sources

No significant change since the Progress Report 2010.

3.5 New Developments with Fugitive or Uncontrolled Sources

No significant change since the Progress Report 2010.

Gedling Borough Council confirms that there are no new or newly identified local developments which may have an impact on air quality within the Local Authority area.

4 Local / Regional Air Quality Strategy

In 2008 an air quality strategy for Nottinghamshire was published by the LA's in partnership with the Highways Agency, Environment Agency and the Health Protection Agency.

The document was designed to "to help local authorities and partner organisations manage and improve ambient air quality and to protect the health and wellbeing of the public in a co-ordinated and integrated manner. In practice, having identified priorities to control air emissions and consulted the public on what action they might be prepared to take to minimise air pollution, the framework is a working document to provide and focus actions to improve air quality in Nottinghamshire."

The document is available through all LA websites in Nottinghamshire:

http://www.gedling.gov.uk/notts_ag_strategy_2008.pdf

The document is designed to be a framework for improvement over a ten year period.

5 **Planning Applications**

In the 2009 USA two major planning applications were described: the Gedling Access Road and the Gedling Colliery Development (see Appendix A).

The applications were submitted in 2008 (ref: 2008/0459 and 2008/0460); since this time the project has been delayed whilst funding is obtained, particularly for the Access Road. Consequently no further assessments have been submitted above and beyond the initial Environmental Statement.

Two applications for mine gas engines have recently been received:

- 1. Former Calverton Colliery (2010/1097NCC) a single 1.6 MWe mine-gas engine.
- 2. Former Gedling Colliery (2010/1033NCC) two 1.6 MWe mine-gas engines.

Both applications have included an air quality assessment both of which have indicated no exceedences of the air quality objectives at the nearest receptors.

6 **Conclusions and Proposed Actions**

6.1 Conclusions from New Monitoring Data

Gedling Borough Council has examined the results from monitoring in the borough. Concentrations for all pollutants except NO_2 are below the objectives, therefore there is no need to proceed to a Detailed Assessment.

Gedling Borough Council has measured concentrations of NO_2 above the annual mean objective at relevant locations, and **is in the process of carrying out a Further Assessment**, for the A60 Mansfield Road.

6.2 Conclusions relating to New Local Developments

Gedling Borough Council confirms that there are no new or newly identified local developments which may have an impact on air quality within the Local Authority area.

6.3 Proposed Actions

Gedling Borough Council proposes no further action as a result of this Progress Report. The Council is currently producing a Further Assessment for NO_2 along the A60 Mansfield Road; data from this report will be fed into this assessment.

Gedling Borough Council will next submit a 2012 Updated Screening Assessment.

7 References

Part IV of the Environment Act 1995 - Local Air Quality Management: Policy Guidance; LAQM.PG(09); Department for Environment and Food and Rural Affairs; 2009.

Part IV of the Environment Act 1995 - Local Air Quality Management; Technical Guidance; LAQM.TG(09); Department for Environment and Food and Rural Affairs; 2009.

The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, 2007. Department for Environment and Food and Rural Affairs.

ML®9841B Nitrogen Oxides Analyser Operational and Service Manuals; Monitor Labs; Rev H; October 1998.

Diffusion Tubes for Ambient NO₂ Monitoring: Practical Guidance for Laboratories and Users, 2008. AEA Energy & Environment.

A Breath of Fresh Air for Nottinghamshire; The Nottinghamshire Environmental Protection Working Group, 2008

Gedling Borough Council - England

Appendices

Appendix A: Maps

Appendix B: Nitrogen Dioxide Diffusion Tube Results and Bias Adjustment Details

Appendix C: QA/QC Data

Appendix A

Maps

Г

Title:	April 2011
Sheet Locations	Scale: nts

The Ordnance Survey mapping included within this publication is provided by Gedling Borough Council under licence (Licence No. LA 100021246)

Diffusion Tube Locations – sheet 1	Scale: nts
	ecale: The

The Ordnance Survey mapping included within this publication is provided by Gedling Borough Council under licence (Licence No. LA 100021246)

Title:	April 2011
Diffusion Tube Locations – sheet 2	Scale: nts

The Ordnance Survey mapping included within this publication is provided by Gedling Borough Council under licence (Licence No. LA 100021246)

Title:		April 2011
	Diffusion Tube Locations – sheet 3	Scale: nts

The Ordnance Survey mapping included within this publication is provided by Gedling Borough Council under licence (Licence No. LA 100021246)

Title:	April 2011
Btex Diffusion Tubes around TotalFinaElf	Scale: nts

The Ordnance Survey mapping included within this publication is provided by Gedling Borough Council under licence (Licence No. LA 100021246)

Title:			April 20	11
Prop	oosed Gedling Colliery Developme	nt	Scale:	nts

Appendix B

Nitrogen Dioxide Diffusion Tube Results And Bias Adjustment Details

Diffusion Tube Bias Adjustment Factors

National Bias Adjustment Factors (BAF) have been obtaining using the co-location studies spreadsheet available at <u>http://laqm.defra.gov.uk/bias-adjustment-factors/bias-adjustment.html</u>

The Gradko national BAF 2010 for 20% TEA in water is given as **0.92** from 39 studies of various types. (see screen shot in this appendix)

Factor from Local Co-location Studies

A co-location study has been carried out with the GBC NOx analyser.

Attached to this appendix the AEA spreadsheet for calculating bias, precision and accuracy of triplicate tubes. The bias factor calculated is **0.92**.

Discussion of Choice of Factor to Use

In this instance both factors are **0.92**.

Adjustment for Receptor Distance

Two of the diffusion tube locations are not representative of the receptors concerned:

- 1. 36 Victoria Road
- 2. The Vale PH

Due to site constraints the tubes are located as close as possible to the receptors. The two results have therefore been adjusted using the 'NO₂ with distance from roads' spreadsheet; available at <u>http://laqm.defra.gov.uk/tools-monitoring-data/no2-falloff.html</u>

Screen shots of these spreadsheets are attached to this appendix.

Co-Location Spreadsheet 2010

Adjustment of SINGLE Tubes													A Energy & Environment he AEA group			
			Diffu	usion	ı Tub	e Me	asur	eme	nts							Adjusted measurement (95% confidence interval) with all the data 12 periods used in this calcuations
Site Name/ID		_			-	P	eriod	ls						Raw Mean	Valid periods	Bias Factor A 0.92 (0.83 - 1.02) Bias B 9% (-2% - 20%)
	1	2	3	4	5	6	1	8	9	10	11	12	13			Tube Precision: 6 Automatic DC: 95%
Marion Murdock Court	33.5	31.0	23.7	20.6	14.8	13.7	13.8	14.5	19.5	24.7	27.5	34.6		22.7	12	Adjusted with 95% Cl 21 (19 - 23)
Hastings Street	38.5	36.9	31.6	26.9	19,4	15.3	16.9	17.4	21.2	25.6	29.9	37.9		26.5	12	Adjusted with 95% Cl 24 (22 - 27)
856 Plains Road	36.1	41.6	36.1	32.5	32.9	27.9	25.0	27.4	30.1	30.6	38.5	42.2		33.4	12	Adjusted with 95% Cl 31 (28 - 34)
Morley Mills, Daybrook	50.4	51.3	45.8	37.2	30.4	30.1	31.4	32.0	38.4	42.6	45.2	56.8		41.0	12	Adjusted with 95% Cl 38 (34 - 42)
Mansfield Road, Redhill	40.5	44.0	41.3	32.7	25.9	23.7	22.4	20.6	29.6	29.6	31.5	41.1		31.9	12	Adjusted with 95% Cl 29 (26 - 33)
Daybrook Dental Surgery	45.1	48.3	42.0	37.6	32.3	29.5	31.6	31.4	39.3	41.3	47.8	52.4		39.9	12	Adjusted with 95% Cl 37 (33 - 41)
Victoria Road, Netherfield 1	42.2	44.0	38.5	31.2	30.4	29.7	24.6	24.1	32.2	36.8	43.0	41.3		34.8	12	Adjusted with 95% Cl 32 (29 - 36)
Victoria Road, Netherfield 2	55.8	47.6	43.6	41.5	37.4	26.7	35.5	33.4	41.9	39.9	47.2	51.1		41.8	12	Adjusted with 95% Cl 38 (35 - 43)
47 Plains Road	48.7	40.0	39.1	33.9	27.0	25.6	26.3	24.7	30.8	40.1	39.2	41.8		34.8	12	Adjusted with 95% Cl 32 (29 - 35)
Burton Rd/Shearing Hill	35.5	36.2	-	27.1	23.2	22.9	22.1	24.7	29.0	27.5	37.8	38.7		29.5	11	Adjusted with 95% Cl 27 (24 - 30)
Vale PH - Thackerays Ln	49.0	49.2	47.0	41.9	36.4	35.0	22.6	37.6	42.6	39.5	48.4	48.9		41.5	12	Adjusted with 95% Cl 38 (34 - 42)
Grove PH - Daybrook Sq	55.7	63.0	46.2	46.8	41.8	35.2	29.7	33.0	46.3	39.9	51.3	55.7		45.4	12	Adjusted with 95% Cl 42 (38 - 46)
Ricket Lane	25.6	27.1	18.3	16.0	11.2	11.1	11.8	11.7	13.8	17.4	22.6	28.6		17.9	12	Adjusted with 95% Cl 16 (15 - 18)
Wickes Store, Daybrook	43.2	46.0	44.8	40.2	29.8	27.0	31.1	31.5	35.4	42.3	-	51.1		38.4	11	Adjusted with 95% Cl 35 (32 - 39)
Civic Centre, Arnold	31.7	31.6	25.1	21.4	16.4	15.5	18.1	18.2	29.5	25.6	24.7	36.5		24.5	12	Adjusted with 95% Cl 23 (20 - 25)
Mile End Road	40.2	45.0	35.0	31.2	30.5	25.7	20.5	23.8	20.2	34.1	38.2	43.7		32.3	12	Adjusted with 95% Cl 30 (27 - 33)
Daybrook Chip Shop	-	60.7	53.7	44.8	45.9	37.0	41.0	38.4	49.1	42.9	56.7	57.9		48.0	11	Adjusted with 95% Cl 44 (40 - 49)
T&S Heating, Daybrook	57.5	55.3	56.2	42.0	41.9	39.4	42.0	40.1	45.7	-	55.8	67.0		49.4	11	Adjusted with 95% Cl 45 (41 - 50)
Frank Keys, Daybrook	58.6	57.3	46.2	37.0	38.3	32.6	34.0	35.4	41.9	47.1	51.7	57.1		44.7	12	Adjusted with 95% Cl 41 (37 - 46)
The bias adjustment (acto	user	in th	esed	alon	ation	s inc.	lude a	II the	data	and	no so	reeni	no of dat	a due to no	or precision has been applied.

2010 Diffusion Tube Results

National Diffusion Tube	Spreadsh	Spreadsheet Version Number: 04/11								
Follow the steps below in the correct order	to show the results	of <u>relevant</u> co	o-loca	tion studies				This	spreadshe	et will be
Data only apply to tubes exposed monthly a Whenever presenting adjusted data, you sh This spreadhseet will be updated every few	updated in late June 2011 on the									
The LAQM Helpdesk is operated on behalf of Defra and the Devolved Administrations by Bureau Veritas, in conjunction with contract partners AECOM and the National Physical Laboratory. SpreadSheet maintained by the Nation										ory. Original
Step 1:	Step 2:	Step 3:				Step 4:				
Select the Laboratory that Analyses Your Tubes from the Drop-Down List	Select a Preparation Method from the Drop-Down List	Select a Year from the Drop- Down List	Where there is only one study for a chosen combination, you should use the adjustment factor shown with caution. Where there is more than one study, use the overall factor ³ shown in blue at the foot of the final column.							
If a laboratory is not shown, we have no data for this laboratory.	n a preparation method is not shown, we have no data for this method at this laboratory.	If a year is not shown, we have no data ²	lf you	i have your own co-location stud Management Helpdes	y then see sk at LAQMI	footnote ⁴ . If unc Helpdesk@uk.bu	ertain what to d reauveritas.com	o then cor or 0800 0	ntact the Loc)327953	al Air Quality
Analysed By ¹	Method To undo yourselection, choose (All) from the pop-up list	Year ⁵ Taundayour relection, chaore (All)	Site Type	Local Authority	Length of Study (months)	Diffusion Tube Mean Conc. (Dm) (µg/m ^{\$})	Automatic Monitor Mean Conc. (Cm) (µg/m ⁸)	Bias (B)	Tube Precision ®	Bias Adjustment Factor (A) (Cm/Dm)
Gradko	20% TEA in Water	2010	В	Rhondda Cynon Taf CBC	10	35	35	0.4%	G	1.00
Gradko	20% TEA in Water	2010	0	North Warwickshire BC	9	48	42	13.6%	Р	0.88
Gradko	20% TEA in Water	2010	UB	LBEaling	10	39	41	-3.8%	G	1.04
Gradko	20% TEA in Water	2010	R	South Norfolk Council	9	28	17	63.7%	G	0.61
Gradko	20% TEA in Water	2010	в	Chelmsford BC	11	16	17	-5.3%	G	1.06
Gradko	20% TEA in Water	2010	R	Chelmsford BC	12	33	21	55.0%	G	0.65
Gradko	20% TEA in Water	2010	R	Chelmsford BC	10	37	32	14.6%	G	0.87
Gradko	20% TEA in Water	2010	R	Wokingham BC	10	37	36	4.1%	G	0.96
Gradko	20% TEA in Water	2010	R	West Dunbartonshire Council	9	22	22	0.1%	G	1.00
Gradko	20% TEA in Water	2010	R	Scarborough BC	12	35	29	18.2%	G	0.85
Gradko	20% TEA in Water	2010	UB Sandwell MBC 11 31 28 11.4% na 0.90						0.90	
Gradko	20% TEA in Water	2010	R Sandwell MBC 11 45 45 -0.9% na 1.01							1.01
Gradko	20% TEA in Water	2010	R	Sandwell MBC	11	37	36	2.0%	na	0.98
Gradko	20% TEA in Water	2010	UB	Sandwell MBC	10	22	21	8.1%	na	0.93
Gradko	20% TEA in Water	2010	Overall Factor ^a (39 studies) Use 0.92							

Gradko 20%TEA in Water Co-location Studies 2010

This calculator allows you to predict the annual mean NO₂ concentration for a location ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.

	Enter	data into the	yellow cell	<u>s</u>				
Step 1	How far from the KERB was your measurement made (in metres)?	(Note 1)	3.5	metres				
Step 2	How far from the KERB is your receptor (in metres)?	(Note 1)	14	metres				
Step 4	What is the local annual mean background NO $_2$ concentration (in μ g/m ³)?	(Note 2)	19.73	µg/m³				
Step 3	What is your measured annual mean NO ₂ concentration (in μ g/m ³)?	(Note 2)	38	μg/m ³				
Result	The predicted annual mean NO $_2$ concentration (in μ g/m ³) at your receptor	(Note 3)	31.2	μg/m ³				
Note 1: This should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 20m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other. More 2: The measurement and the background must be for the same year. The background concentration could come from the national maps								
published at www.airquality.co.uk, or alternatively from a nearby monitor in a background location.								
Note 3: The calculator follows the procedure set out in Box 2.2 of LAQM TG(08). The results will have a greater uncertainty than the measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large.								
	Issue 1: 30/06/08. Created by Dr. Ben Marner: Annroyed by Prof. Duncan Laven. Con	tact: henmarner@a	reonsultants eo u	k				

Vale PH Calculation for Distance to Receptor

This calculator allows you to predict the annual mean NO_2 concentration for a location ("receptor") that is close to a monitoring site, but nearer or further the kerb than the monitor. The next sheet shows your results on a graph.

Enter data into the yellow cells

Step 1 How far from the KERB was your measurement made (in metres)? 1.5 (Note 1) metres (Note 1) Step 2 How far from the KERB is your receptor (in metres)? 4.5 metres $\mu g/m^3$ What is the local annual mean background NO₂ concentration (in µg/m³)? 18.49 Step 4 (Note 2 $\mu g/m^3$ What is your measured annual mean NO₂ concentration (in $\mu q/m^3$)? Step 3 (Note 2) 38 $\mu g/m^3$ The predicted annual mean NO₂ concentration (in µg/m³) at your receptor (Note 3) 33.3 Result Note 1: This should be measured horizontally from the kerb and assumes that the monitor and receptor have similar elevations. Each distance should be greater than 0.1m and less than 50m (In practice, using a value of 0.1m when the monitor is closer to the kerb than this is likely to be reasonable). The receptor is the location for which you wish to make your prediction. The monitor can either be closer to the kerb than the receptor, or further from the kerb than the receptor. The closer the monitor and the receptor are to each other, the more reliable the prediction will be. When your receptor is further from the kerb than your monitor, it is recommended that the receptor and monitor should be within 20m of each other. When your receptor is closer to the kerb than your monitor, it is recommended that the receptor and monitor should be within 10m of each other. Note 2: The measurement and the background must be for the same year. The background concentration could come from the national maps published at www.airguality.co.uk, or alternatively from a nearby monitor in a background location. Note 3: The calculator follows the procedure set out in Box 2.2 of LAQM TG(08). The results will have a greater uncertainty than the measured data. More confidence can be placed in results where the distance between the monitor and the receptor is small than where it is large. Issue 1: 30/06/08. Created by Dr Ben Marner; Approved by Prof Duncan Laxen. Contact: benmarner@agconsultants.co.uk

36 Victoria Road Calculation for Distance to Receptor

	NO2 /u	ıgm-3			2010								Annual	Adjusted	Distance	Data
Site	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec	Mean	for bias	Adjmnt	Capture
Marion Murdock Court	34	31	24	21	15	14	14	14	19	25	27	35	23	21		100
Hastings Street	39	37	32	27	19	15	17	17	21	26	30	38	26	24		100
856 Plains Road	36	42	36	32	33	28	25	27	30	31	38	42	33	31	(1111)	100
Morley Mills, Daybrook	50	51	46	37	30	30	31	32	38	43	45	57	41	38		100
Mansfield Road, Redhill	41	44	41	33	26	24	22	21	30	30	31	41	32	29	(].[.].	100
Daybrook Dental Surgery	45	48	42	38	32	29	32	31	39	41	48	52	40	37	([[]])	100
19 Victoria Road, Netherfield	42	44	38	31	30	30	25	24	32	37	43	41	35	32	9.7779.	100
36 Victoria Road, Netherfield	56	48	44	42	37	27	35	33	42	40	47	51	42	38	31	100
47 Plains Road	49	40	39	34	27	26	26	25	31	40	39	42	35	32		100
Burton Rd/Shearing Hill	35	36	-	27	23	23	22	25	29	27	38	39	30	27	(/////	92
The Vale PH - Thackerays Ln	49	49	47	42	36	35	23	38	43	40	48	49	42	38	33	100
The Grove PH - Daybrook Sq	56	63	46	47	42	35	30	33	46	40	51	56	45	42		100
Ricket Lane	26	27	18	16	11	11	12	12	14	17	23	29	18	16	//////	100
Wickes Store, Daybrook	43	46	45	40	30	27	31	32	35	42	-	51	38	35		92
Civic Centre, Arnold	32	32	25	21	16	16	18	18	30	26	25	37	25	23		100
Mile End Road	40	45	35	31	30	26	20	24	20	34	38	44	32	30		100
Daybrook Chip Shop	-	61	54	45	46	37	41	38	49	43	57	58	48	44		92
T&S Heating, Daybrook	58	55	56	42	42	39	42	40	46	-	56	67	49	45		92
Frank Keys, Daybrook	59	57	46	37	38	33	34	35	42	47	52	57	45	41		100
Analyser in ppb	25	29	23	21	17	15	11	12	15	20	26	31	20			
ANALYSER IN ug/m-3	48	55	44	40	33	29	21	22	30	38	49	60	39			
DATA CAPTURE %	97	97	97	97	92	75	97	97	95	97	96	97	95	%		

Bias Adjustment Factors (BAF) gradko 0.92 39 National (various)

Nitrogen Dioxide Diffusion Tube Monitoring 2010 - Adjusted for Bias

Appendix C

QA / QC Data

Quality Assurance and Quality Control – Nitrogen Dioxide Diffusion Tubes

Overview

Diffusion tubes are small clear plastic tubes open at one end with a pollutantabsorbing chemical matrix or gel at the closed end. The tubes are prepared and sealed before being transported to the monitoring site. At site, the tube is exposed, by removal of the end cap, for a period of one month. After the month the tube is resealed and sent to an analytical laboratory.

The laboratory analysis measures the quantity of pollutant absorbed and then calculates an average ambient pollutant concentration over the exposure period. Diffusion tube results are for NO₂, concentrations measured in parts per billion (ppb) and micrograms per cubic metre (μ gm³).

Tubes are exposed on a monthly basis, following the timetable prescribed by the Diffusion Tube Network in which tubes are replaced generally on the first Wednesday of the month.

Historical, Walsall Metropolitan Borough Council Laboratory have supplied and analysed GBC NO₂ diffusion tubes, using 50% solution TEA in acetone.

From April 2008 GBC entered into a Countywide contract with Gradko Ltd. for the supply and analysis of NO_2 diffusion tubes. At the same time it was agreed to use the same preparation method (20% solution of TEA in water). This harmonisation of laboratory and method for the county will allow easier comparisons of results across LA boundaries.

QA/QC Procedures

<u>Gradko</u>

The European Union Daughter Directive for NO₂ sets out data quality objectives for overall accuracy. Annual average NO₂ concentration results must comply with the objective of $\pm 25\%$ of the reference concentration therefore, average diffusion tube measurements should comply with this objective.

The precision of analytical measurements is also an important consideration, as it is possible to arrive at an average bias of less than $\pm 25\%$ with very imprecise measurements. Following previous intercomparisons of laboratory results an arbitrary guideline figure of 3ppb for acceptable precision has been adopted.

Gradko's NO₂ diffusion tube procedures follow the Defra guideline document¹ related to the preparation, extraction, analysis and calculation procedures for NO₂ passive diffusion tubes. Their internal analysis procedures are assessed by U.K.A.S. on an annual basis for compliance to ISO17025.

Results from the ongoing Workplace Analysis Scheme for Proficiency (WASP) programme for Gradko generally show a "Satisfactory" performance classification.

¹ Diffusion Tubes for Ambient NO₂ Monitoring: Practical Guidance for Laboratories and Users

Gedling Borough Council

Tubes are stored in a refrigerator until the day of exposure. On site, when the tubes are collected the date, site and time are recorded, referenced to the tube numbers assigned by the laboratory. The tubes are then forwarded to Gradko for analysis on the day of collection, along with a 'blank' trip diffusion tube.

The Council has conducted a co-location study, details are found in Appendix B.

Quality Assurance and Quality Control – BTex Diffusion Tubes

The tubes used are Perkin Elmer thermal desorption (ATD) tubes packed, with nominally 100mg of Chromosorb 106. They are analysed using a Perkin Elmer ATD 400 automatic thermal system; Perkin Elmer 8700 gas chromatography with an ion trap detector. The uptake rate for benzene onto Chromosorb 106 is 0.54cm3 /min. Tubes were analysed by Walsall Metropolitan Borough Council Laboratory (WMBCL) from 1997 until 2003. However, WMBCL were unable to continue processing Btex tubes and so Harwell Scientifics took over with supply and analysis from April 2003.

Tubes are stored in a refrigerator until the day of exposure. On site, when the tubes are collected the date, site and time are recorded, referenced to the tube numbers assigned by the laboratory. The tubes are then forwarded to Scientific Ltd for analysis on the day of collection.

Tubes are exposed on a monthly basis, following the timetable prescribed by NETCEN in which tubes are replaced generally on the first Wednesday of the month.

Chemiluminescent Monitor Data

Overview

The automatic monitoring system used (Monitor Labs ML®9841B) uses gas-phase chemiluminescence detection to perform continuous analysis of nitric oxide (NO), total oxides of nitrogen (NOx), and nitrogen dioxide (NO₂). The instrument consists of a pneumatic system, an NO₂-to-NO converter (molycon), a reaction cell, photomultiplier tube (PMT) detector, and processing electronics.

During 2001-2007 the analyser was housed in the basement of the Daybrook Baptist Chapel. This site provides a safe and secure, dry location with a constant temperature and electrical supply. In January of 2008 the analyser was moved to a Casella ROMON enclosure on the opposite side of the A60 Mansfield Road. The analyser has been operational since August 2000; data capture levels are: -

96% 2001	96% 2005	95% 2009
95% 2002	93% 2006	95% 2010
97% 2003	83% 2007	
98% 2004	81% 2008	

The ML®9841B analyser has a quoted detection of \pm 0.5ppb and a precision of \pm 0.5ppb or 1% of reading, which ever is largest. Accuracy of the analyser is dependent on the calibration and the calibration gases used.

QA/QC Procedures

The analyser is subject to a fortnightly two point manual calibration, by a suitably trained site operative, which is conducted in accordance with the manufacturers quality control procedures. Filters at the sample head are changed concurrently with calibration. The equipment is serviced twice a year by the manufacturers accredited engineers. In addition the National Physical Laboratory (NPL) audited the site in 2002 and 2005.

Calibration gases (Air and NO) used during the fortnightly calibration are supplied by BOC, who have demonstrated compliance with relevant quality control procedures in the preparation of gas mixtures. Gas cylinders are replaced before use by dates or when the gas levels fall below 50 bar.

Data Validation and Ratification

A process of data validation is carried out by GBC on a fortnightly basis after application of the calibration factors. Validation is carried out in accordance with good practise [Annex 1.164 of LAQM TG(09)].

Then every quarter the data undergoes a process of ratification; assessing for drift, removing spurious data etc. Again this process is carried out in accordance with good practice [Annex 1.164 of LAQM TG(09)].